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1. INTRODUCTION

In this paper we discuss an algorithm for choosing a

best “partial basis” h. ,~~‘•,h. from a collection of basis11
functions h1, • • • ,h~ to best approximate a given function f

with respect to a specified norm. Our results have been strongly

motivated by the difficult problem of choosing best locations

for antenna elements in a linear array. This problem, which

has been considered in various forms in the engineering litera-

ture ([1]-(4]), is formulated below so that the reader can

better understand the subsequent developments. In section 2

we formulate the partial basis problem precisely, present an

algorithm for its solution, and discuss numerical results of

the application of the algorithm to the antenna design problem.

In section 3 some theoretical results are presented.

The field pattern of a symmetric line array of antenna

elements with real symmetric element currents is proportional

to the magnitude of
I

n
(1) p(u) = 

~ 
ak COS , 0 < u < •ir ,

k=l —

where u = ir sinO . 0 is the angle measured from a normal
H

L — ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-t —~
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to the array axis , = x.K/(X/2), A is the wavelength of

the design frequency, and x.~ is the distance of the kth

element from the center of the array. If the array aperture

is constrained to be at most A, say, then we will have

0 < x1 < ••‘ < x~ < A/2 . The basic objective is to vary

the element currents ak and locations to make ~p(u) I
small for u away from u =0 , subject to the normalization

condition Ip(0)I =1 . We formulate this as a problem of

approximating an ideal function

1 if 0 < u < u
(2) f(u) = 

— 0
O i f u

1
< u < i r

where 0 < U
0 

< u1 if (if U
0 

< u
1
, we define f(u

1
) = 0

also). As a measure of the approximation we use an Lr norm,

h r
(3) II ~~ 

— 

~~ I t  = 
{ J 

w(u) ~f(u) — p(u) I
XdU }

[0,u01 U (u1,irJ

the most important case being r = 2 (least squares approximation),

or a uniform (ntinimax) norm

(4) ~f — 

~ II = max w(u) I f(u) — p(u) .
uc(o,u0]L) Lu1,tr]

I

Here w(u)  is a continuous weight function often chosen to

be w (u )~~~~l .  

—..~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Our formulation of the antenna design problem is then

n
minimize II f(u) - ~ 

ak cos U
ak. 

~k 
k=l

(5) subject to 0 < <...< < L

and 
~k+l ~k 

> A > 0, k =

where A > 0 is specified and L serves to limit the aperture

of the array. The condition - 
~k-l 

> A prevents any two

elements from getting arbitrarily close together. This

assumption is natural on physical grounds; furthermore it has

an important effect in simplifying the mathematics.

An important feature of our approach to problem (5) is

restricting the variables 
~~~~~~~~ 

to a discrete set

T = {t l, s a ,t
N
} of possible values, where

0 — tl
< < t N = L, N > n, and t~~1— t~ > A , i = l,•’•,N — 1

The most obvious choice for P would be equispaced points

t~ = (i-l)L/ (N-l), i = l, ”,N . The problem (5) now becomes

( 6)  minimize II f(u) — 

~ 
ak cos U

~~~~~~~~~ 
k=l

{
~~1

i
~~~

S S

~~~~n
} C T

Since each t~ gives rise to a basis function cos t~u , we

think of problem (6) as that of choosing a best partial basis

{cos ~ju : i= 1,”,n} from the full set of possible basis

functions {cos t~u : i = 1,’’•,N} to approximate the ideal

function f with respect to the specified norm.

_ _ _ _ _ _  
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• 2. THE ALGORITHM FOR THE PARTIAL BASIS PROBLEM

• We now extend the partial basis problem (6) for the

selection of best antenna element locations and currents to

a more general context. Let h1~~~~
ss .h

N 
be linearly indepen-

dent basis functions; we wish to choose a best partial basis

consisting of n (<N) of them to approximate a given func-

tion f . The problem is then

n
(7) minimize I I f — a h I I

a. , ‘ ,a. j=1 ~j  ~j
il in

1<  i < . . .< i < N— l  n —

Assuminq we can compute the error

n
mm H f -  ~ a. h . j~ai j~1 

1•j 1j

for each fixed set of basis functions h~ , ... ~~ , problem (7)
1 n

can be solved in a brute force way by computing the error

corresponding to each of the (~ ) partial bases. However

the computer time required might well be prohibitive; hence a more

systematic method of inspecting the partial bases is desixable.

The algorithm we present is a direct generalization of

an algorithm due to Hocking and Leslie [51 for selecting a best

subset of independent variables in a linear regression analysis;

their concern was a least squares fit. The algorithm searches

_ _  _ _ _ _ _  
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for r = N - n basis functions to delete from the full set

of basis functions. We first compute for i =
• N

E1 
= mm (

~ f 
- ~ a4h. H

-J

a •~~~~‘ a a •~~~ • -‘
* 1’ ‘ i—i’ i+l ’ .aN j~i

= error of a best approximation using all basis functions
except h~

To avoid cumbersome notation we assume the basis functions

are renumbered so that E1 < E2 < 
• . .  < E

N 
. The following

simple lemma is the principle upon which the algorithm is

based .

LEMMA 1. Let I = 
~~l’

•••’~ r~ 
C {l,’••,tq} be a set of r

indices with largest element 
~r • If

n
(8) mm H f — a h. 

~ 
< E.

~a. : i~i} 1= 1 ~ — 1+ 1
1 

i~I

then for any subset I’ C {l,•’ ,N} which contains an index

• ii 
~~
1r~~~

1 we have

n n
mm ‘ I I  f —~~a4h. J~ > min II f — ~ a4h. H{ai : ijl’} i=l~ ~ {aj : i~I} i=l .L 1

i%I’ u I

In words, if inequality (8) is satisfied, a better partial

basis cannot be obtained by deleting a basis function with

index > i + i .

___________ —~~~~~••—~~~~~ 
__ • 

~55_L-S .---- - ~~~~~~~~~~~~~~ 
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N N
• Proof. mm h f  - 

~ a .h .II > mm lI f - 
~~ 

aihi hl
{a. :ijl’} i=1 ~ {a~ :i~i’} i=l1 ijl’

N
= E ., > E

i + 1 > mm I f - ~ a~h. I Ir {a.:ijl} i=l 1
1 i�I

We now formulate the algorithm.

Step 1. Compute El~
•a•

~
EN~ 

renumbering the basis functions

if necessary. If

Nmm h f  - 

~ a~h~ h I < Er+lar+lI ,aN i=r+l

then by Lemma 1 with I = (l ,•• ‘,r} we see that hr+i~ 
‘ “~~~ is

a best partial basis and the algorithm terminates. If
N

mm l If  — a~h .It >
ar+l, ,aN i=r+l 1

we proceed to Step 2.

Step 2. Compute the quantities
N

mm h f  — 
~~ a~h~ Il

(a. :itI2) i=l1 i~I2

where 12 consists of r of the indices l,’~ •,r+l

Let 12* be an index set giving the minimum over such index sets.

If
N

mm h f  — a h II < E
{aj:i~I2

*} 
~~~~~~~~ 

i i — r+2

I
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then by Lemma 1 with I = 12* a best partial basis is obtained

by deleting those basis functions with indices in 12* and the

algorithm terminates. If
Nmm H f —  ~ a.h .hI >

(a. :i%12*} i=1 1 1. r
i~I2*

we proceed to the next step.

A general step of the algorithm can be described as follows.

Step q. Compute the quantities

Nmm h i f  - 
~~ a .h .II

{a
~
:i
~
I } i=l 1 1
q 

1~ Iq

where ‘q consists of exactly r of the indices l,~ ••,r + q — 1

Let I
q
* be an index set giving the minimum over such index sets.

If

N
miii I f —  ~ a .h .hI < E

{a.:i%I *} i=l 1 1 — r+q
1 q

then by Lemma 1 with I = Iq* a best partial basis is obtained

by deleting those basis functions with indices in Iq* . If

N
• mm I I f — a

~
hi I I > E

{a :i~I *} i=l .L r
q

the algorithm proceeds to the next step.

Of course the algorithm will either terminate at some step

• with a best partial basis or continue to search all partial bases; 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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hence a best partial basis will be obtained . The value of the
- 

. algorithm is in identifying a best partial basis after having

searched only a fraction of the (~) possibilities.

We have written a FORTRAN computer program to implement

the algorithm for the antenna design problem. It is presently

capable of doing weighted least squares problems; we plan to

extend it to solve minimax problems. As an illustration of the

procedure consider the following example.

EXAMPLE 1.
f’ 1 if 0 < u < .1

f(u) = — —
( 0 if .15 < u < .5

The problem is to choose 9 out of the 21 basis functions

cos 2,~ku , k = 0,l, •~~,2O, to best approximate f ( u )  in the

least squares norm

I ~f ( u )  - p(u) I I  = {S If (u - p(u) I 2du}~~ 2 -
•

[0,.l]v [.15,.5] 4

To avoid square roots , we actually work with I If - p 11 2
The algorithm identifies a best partial basis consisting of the

basis functions corresponding to k = 0,1,2,3,5,6,7,9,10;

notice this gives a much smaller aperture than the maximum

allowable. A best partial basis is actually attained in

Step 2, although it cannot be identified as such by the

algorithm until after Step 3. The algorithm examines only

r + q - l  141
r = i2J = 91 partial bases out of the

21
possible 9 

= 273 , 930. It should be noted , however,
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that the algorithm works exceptionally well for this example

because the basis functions are nearly orthogonal.

EXAMPLE 2. For f(u) as in Example 1, the problem is to

choose 4 out of the 21 basis functions cos 2~rk(.l)u,

k = 0, l , , 20, to minimize

2 4 2

J [f(u) — ) a~ cos 2irk.(.l)u] + (.01) 
~ 

ak .

j=l j j=1 j
[0 ,.l]~j(.l5,.5]

This criterion has the desirable effect of controlling the

size of the coefficients; also numerical difficulties due

to ill-conditioning are reduced. The algorithm identifies

cos 2ir(.7)u, cos 2n (.8)u, cos 2iT(l.6)u, cos 2n’(2)u as a best

partial basis after Step 4 after examining 1140 out of the

possible 5985 partial bases.

Figure 1 shows p(u) corresponding to a best partial

basis for Example 1.

In [6] an improvement of the Hocking-Leslie algorithm

is given; this modification can be incorporated into our

algorithm as well. 
-

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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• 3. THEORETICAL RESULTS

• In this section we state and prove a “continuous dependence”

theorem and an existence theorem and apply them to the antenna

design problem. The following lemmas will be used in proving

the theorems. We will use the notation
S 

a Il l 
- h J ( a 1,...,a ) h t 1 = i~l 

Ia~~I

for the 2s
1—norm of an n-vector of real numbers.

LEMMA 2. Let x be a real normed linear space with

norm 1 . 1 1 ’  f in X, lim lI a~~ 
— a~°~I l 1 = 0 ,

k-~

and lim I h~ (k) - h~ 
(0) = 0 for i = 1, . . • , n

where in x, i. = l,”•,n; k = 0, l,~ ’•

Then lim Hf — ~ aj~~~ h. 
(k) 

~ = ( I f  — ~ ~~~~~~~~~ I t
k-~ i=l 1 i=l

Proof. — 

i~l 
~~~~~~~~~ II — I If — d1 ~~~~~~~~~ II 

S

~~. 
I I f  — 

~~~ a1~~~h.~
1
~~) — (f— ~i=l 1 i=l ~

= I t  ~ ~~~~~~ 
(k) 

— ~ ~~~~~~~~~ II 
5

i=l i=l 1

~ II ~ aj~~~ (h~~~~-h~~°~) II + I I ~ aj°Q.a. 
(0~~ h (0) 1 1

- 

- i=l ~~~ 
1

~ VI a°~~~I 1
. max hI h~ -h~~°~ I I + i Ia~~ - a~°~ h 1 1 max lhh~~°~ h h  .
1Ci<n j.<i<n 

~~~~~~--~~~~~ — _ - - , - - .-~~~~~~ -~~~~~~~~~ ——-~~~~~~~ — 
- _ _ _ _
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The conclusion of the lemma now follows since the convergent

(k)sequence I ja II~ is bounded.

LEMMA 3. If lim Ih~~”~ — h~~°~ II = 0, i = l,’••,n)where ~~~~

are in the real normed linear space X for i =

k = 0, 1, ”” ; ~~~~~~~~~~~~~~ are linearly independent,

and lim II a~~~I I 1 = 
~~ , then (II ~ ~~~~~~~~~~~~~ = 1, 2,~~~

”}
k-,co i=1

is unbounded.

- - Proof. Assume II a. (k)h. (k) is bounded.

— . i=1 3.

The sequence a ~~~~ a ~~ 1 is bounded and hence has a

(k) (k)
convergent subsequence a ZU / i la  m I~ with limit, say,

n (k) (k (k)
having I Ia (0) = 1 . Then 0 = urn  I I ~~~~ 

rn h~ 
in) i/i l a in

(km )

= 

~~~~ 

~ ~ j~~ I ~~ ~ ~ 
h~ 
(km) I I

= II ~ ~~~~~~~~~ 
by lemma 2.

i=1 1

Hence ~ a. ~~~~ 
(0) 

= 0 which contradicts the linear
i=l ~ 3.

independence of ~~~~~~~~~~~~~~ and completes the proof of

the lemma. -

Our first theorem concerns the continuous dependence of

a best approximation on the basis functions.

THEOREM L.~ Let X be a real normed linear space, f c X,

and ~~~~~~~~~~~~~~ linearly independent in X .

_ 
__

-~~~~~ 
— ---____ - —-— - ---.5—------ ---------- --—---.-. ,

— - 5- _-52S_ _-S~ 
— 

— 
5-
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Let d~
0
~ = h f  — 

~ ~~~~~~~~~~ = unf i lf  
— 

~~ 
a~h.~ °~ II

i=1 a ,••‘,a i=l

• Then

(I) If ~~~~~~~ are in X and I Ih~ — h~~°~ I I < .6 ,

i = l,” - ~,n then d ~~ . d~
0
~ + 6 •  ~ iai~°~I

i=1

- - where d = inf I If - ~ a~h.~h I
a1,• • • ,a i=l

(ii) Given c > 0 there exists 6 > 0 such that

if h1, . . ., h are in X and j h1 
— h~ 

(0) I J < ~~ i l  • • ~ fl~

then d~
0
~ — c < d

‘0’ ‘0’(iii) If ~ a~ ’ ‘h.’ 
‘ is a unique best approximation to f by

i=l 1

linear combinations of ~~~~~~~~~~~~~~ then given c > 0 there

exists 6 > 0 such that if 
~~~~~~~~ 

are in X and

II h~ — h1~°~ II < ~ , i —

we have Ia~ — a.~ °~ i < c , i = l,”~ ,n,

where I If  — ~ a1h . JJ  = inf I If — ~ a.h11 I.
i=l a ,••‘,a i=l ~1 

3

n n
Proof. Ci) d = inf I If — 

~ a
~
h
~ I I ~~. I If — ~ ~~~~~~ i ia1,•’•,a i=l i=l

= I I  (f — 
~ ~~~~~~~~~~ 

+ ~ a~~ °~ (h~~°~ 
— hj) IIi=l i=l

< l If ~~~~~~~~~~~~ + ~1
t a j (0) I . I t hi

(0) _ h . h j

.~~~~ d~
0
~ + 6. ~~ Ia .~ °~ t .

i=l

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(ii) Assume (ii) is false. Then there exist c > 0

• ~~~~ in X, k = 1, 2,~~•• , with

lim II h ~~~ 
— h~~

°
~ J I = 0, i = l,.~~ ,n, and

k = 1, 2,•’~ , such that

(If — 

~~~~~~~~~~~ < d~°~ 
— c .

By lemma 3, I I a (k) is bounded and hence (a (k)

(k)
- 

- 
has a convergent subsequence, say (a Ui }, with
limit, say, a* . Then

- f- (0’ ii (Jc~) (k) (0)d ‘— c > u r n  Hf — ~ 
a~ h. ~~1 j = H f— ~ a~ h.i=l i=1

> ~~~~ a contradiction.

‘iii) If the conclusion of (iii) is false, then there

exist h. (k) with lim I Ih~~~ — h. (0)11 = 0, i 1 ,”• ,n,1 k-,o3 1

n 
~~~ ‘k’and a ’ ‘ with I I f— ~~ a ~‘ ‘h ~ 

‘7 I
i=1 1 1 -

= inf h f  — 
~~ a~h~~~~ I I ~~ . I I  f I I

~~~~~~~~ i l

such that H a - a (0)~~ 
~ 

> c for k = 1, 2, .

By lemma 3, I I a h i ~ is bounded and hence (a }
(k.)

has a convergent subsequence (a ~ I with limit, say, a.
co ’ f l  (k.) (k.)

Then I j f  — 

~ âih~ ‘ I I  = lim I If — 

~ a~ ~ h1 
~~ H

i=1 j-
~ i=l

= d~
0
~ by (i), (ii). This contradicts the

uniqueness of a~
0
~ and completes the proof of the

theorem.

5— ~~~~~~~~~~~~~~~~~~~~~ .., I L ~~~~~~ 
~~~~~~~~
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- We now wish to prove an existence theorem for the

generalization of problem (5) in section 1. The following

hypotheses will be useful.

Hl. X is a real normed linear space with norm I I I i
and f € X .

H2. h(u, ~) is a real function on [cz1, a2] x [8i~ 
82]

such that for each E in [8 k ,  
~2~ ’ h (, ~) is in X.

H3. For any 81 ~~~~~~~~ 
<

~~~

“ < - 
~ 
82 the functions

h(u, ~1),
..•,h(u,~~ ) are linearly independent.

H4.  There exists K > 0 such that for any ~~ in [8l~ 82
]

a I Ih(u ,~ ) — h(u, ri) I I < K . — n I  .
H5. Notation: T~ = 

~i’ ’ ~ n~ 
: Bi <

- 
~l 

< <
~n ~

- 

~i+l 
— > ~~~, i l ,.’.,n—l}

(82 81)for- 0 < ‘~ — 1 (so that T~ is nonempty).

THEOREM 2 (EXISTENCE). Assume Hl-H5. Then there exist

and ~ c T~ such that

- I I f ( u )  = 

~ 
â~ 

h ( u, 
~~~ I I  = inf I I f ( u )  -

~~~~ aj h(u~~~) I I .
i=l a1,•••,a i=l

~~
c T A

Proof. Let a(k), E (k) c T~ be such that

Urn I If - 

~ a~~~~h(u,~~.~~~) ~ 
= inf I I  f ( u )  - ~ a.h (u~~~) I I

~~~ i=l 1 
~~~~~~~~~~ i=l 1

~~ c T ~

Since T~ is compact, there exists a convergent subsequence
S 

(k) (kF of ~ ~~, with limit , say , F in T~. Using H4 we see lemma 3

applies with ~~~~ = h(u, ~~(k)) and so tI a °
~~ t I 1)

is bounded. Letting a Ut be a convergent subsequence

—
~~ 

-S 
-~~~~~ -
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• with limit ~ we obtain
(k
~~
) (k

3
)

• u r n  I ( f  — ~ a1 
m h(u.~~ 

UI ) Ii = I If — ~ a~h(u1 E~ ) II
i=l i=l

by lemma 2, which completes the proof of the theorem.

We now examine the implications of Theorems 1 and 2.

Theorem 2 guarantees the existence of best element locations

0 < < L and currents a
1
*,..., a~ * for

problem (5); this follows by taking h(u, ~~) = cos 
~~~

Theorem 1, part Ci), guarantees that if 0 
~ ~l 

<
~~~~~~

< 

~n ~ 
L

. *satisfy I-c . - 

~~ 
I < y , there is a constant C such that

1

ii
(9) d* < d < d* + C•y ~ Iai*I

i=l

ii
where d = inf JI ~ 

- ~ a~ cos ~ uI I ~a1~~~’.a~ i=l

n
I I f  — ~ ai* cos ~~~~ , and (( .

i=l

is of the form (3) or (4) in section 1.

We can interpret inequality (9) as giving a bound on H-

the deviation of a best approximation to f using element

locations which are not optimal (not a solution of problem (5));

suboptimal locations could result from the discretization of

possible locations introduced at the end of section 1.

• Inequality (9) can also be interpreted as bounding the change

in the deviation due to a perturbation in the element locations,

which might occur physically.
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- 
. In closing, we mention the related work of Rice ([73,

Chapter 8); there the situation is more complicated because

~ c TA is not assumed.

Other work on the partial basis problem can be found

in [8—11).

I 

•

I

_ _ _ _ _ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~ ~~~~
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